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Interval Fuzzy Modeling Applied to Wiener
Models With Uncertainties

Igor Škrjanc, Sašo Blažič, and Osvaldo Enrique Agamennoni

Abstract—This correspondence addresses the problem of interval fuzzy
model identification and its use in the case of the robust Wiener model. The
method combines a fuzzy identification methodology with some ideas from
linear programming theory. On a finite set of measured data, an optimality
criterion which minimizes the maximum estimation error between the data
and the proposed fuzzy model output is used. The min-max optimization
problem can then be seen as a linear programming problem that is solved
to estimate the parameters of the fuzzy model in each fuzzy domain. This
results in lower and upper fuzzy models that define the confidence interval
of the observed data. The model is called the interval fuzzy model and is
used to approximate the static nonlinearity in the case of the Wiener model
with uncertainties. The resulting model has the potential to be used in the
areas of robust control and fault detection.

Index Terms—Interval fuzzy model, linear programming, min-max opti-
mization, Wiener model.

I. INTRODUCTION

Interval modeling is a methodology to approximate function fami-
lies that are given as a finite set of input and output measurements. In
connection with fuzzy models, it can be successfully applied to approx-
imate nonlinear function families. The result of such an application is
the interval of parameters that define the confidence band containing
the whole measurement set.

This type of modeling in combination with other classical modeling
methods enables the investigation of uncertainty problems in nonlinear
dynamical systems. Fuzzy linear regression, proposed in [1], is still
one of the most widely used approaches in fuzzy modeling due to its
use of linear programming and because of its simplicity. This approach
has influenced the investigation of the uncertainties problem in recent
years. In [2] the possibility fuzzy linear regression was used; this is
based on an estimation of the reliability of the data defined by a relia-
bility threshold value. A modification of this approach was reported in
[3], where the bounds of the measurement interval are treated as fuzzy,
and in [4], where a method is presented that can detect the outliers.
Another approach associated with modeling systems with uncertain-
ties is presented in [5]–[7]. These approaches are called type-2 fuzzy
systems, and they translate all the uncertainties of the measurement
into uncertainties about the membership functions. This approach re-
sults in a notation that gives the third dimension to the membership
functions of the classical type. This dimension is called a possibility
grade and provides the possibility for the classical or type-1 member-
ship degree. In our approach the membership functions are certain and
the uncertainty is modeled by the time-invariant interval parameters of
the system. The estimation of the model parameters requires a linear
programming method.

To demonstrate the possible use of the interval fuzzy model, it is
implemented in the robust Wiener model, which consists of a dynamic
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linear block in cascade with static nonlinearity at the output. The imple-
mentation of the interval fuzzy model provides the possibility to model
nonlinear dynamical systems with uncertainty or the families of non-
linear systems with uncertain physical parameters.

The interval fuzzy models can also be very efficiently used in the case
of fault detection, where the model of the normal dataset or the normal
functions with some normal uncertainties is identified and compared
with the tested data. When the data of a tested function do not belong
to the confidence interval, then we can assume the faulty functioning
of the corresponding system.

The correspondence is organized as follows. In Section II the back-
ground to interval fuzzy modeling is provided, and in Section III the use
of the interval fuzzy model is shown for the case of the robust Wiener
model. A simple example is provided to illustrate the proposed proce-
dure. At the end some conclusions are given.

II. INTERVAL FUZZY MODEL IDENTIFICATION

We assume a typical fuzzy model given in the form

Rj : if xp1 is A1;k and . . . and xpq is Aq;k

then y=�j;0+�j;1x1+�j;2x2+. . .+�j;nxn

j = 1; . . . ; m

k1=1; . . . ; f1 k2=1; . . . ; f2 . . . kq=1; . . . ; fq: (1)

The q-element vector x
T
p = [xp1; . . . ; xpq] denotes the input

or variables in premise, and the variable y is the output of the
model. With each variable in premise xpi (i = 1; . . . ; q), fi
fuzzy sets (Ai;1; . . . ;Ai;f ) are connected, and each fuzzy set Ai;k

(ki = 1; . . . ; fi) is associated with a real-valued function �A (xpi):
! [0; 1], that produces the membership grade of the variable xpi

with respect to the fuzzy set Ai;k . To make the list of fuzzy rules
complete, all possible variations of the fuzzy sets are given in (1),
yielding the number of fuzzy rules m = f1� f2� � � � � fq . Note that
while the indices k1; . . . ; kq change all the possible variations, j runs
from 1 to m. The variables xpi are not the only inputs to the fuzzy
system. Implicitly, the (n + 1)-element vector xT = [1; x1; . . . ; xn]
also represents an input to the system. It is usually referred to as the
consequence vector.

The output of the fuzzy model defined in (1) is given in the matrix
form as follows:

y = ���
T (xp)���x (2)

where the membership vector

���
T (xp) = [�1(xp); . . . ; �m(xp)] (3)

is composed of normalized degrees of fulfillment

�j(xp) =
�A (xp1) . . .�A (xpq)

f

k =1
� � �

f

k =1
�A (xp1) . . .�A (xpq)

;

j = 1; . . . ;m (4)

and the matrix of fuzzy model parameters

��� =

���
T
1

...
���
T
m

(5)

is composed of vectors of parameters in individual fuzzy domains

���
T
j = [�j;0; �j;1; . . . ; �j;n]; j = 1; . . . ;m: (6)
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It is obvious that m

j=1
�j(xp) = 1 irrespective of xp as long as the

denominator of �j(xp) in (4) is not equal to zero (that can easily be
prevented by stretching the membership functions over the whole po-
tential area of xp).

From (2) it is evident that the output of a fuzzy system is a function
of the premise vector xp (q-dimensional) and the consequence vector
x [(n + 1)-dimensional]. The dimension of the input space d may be
lower than (q+n+1) since it is very usual to have the same variables
present in vectors xp and x

max(q; n+ 1) � d � q + n+ 1: (7)

The fuzzy model in the form given in (2) is referred to as the affine
Takagi–Sugeno model and can be used to approximate an arbitrary
function that maps the compact set C � d to with any desired
degree of accuracy [8]–[10]. The generality can be proven by the
Stone–Weierstrass theorem [11], which indicates that any continuous
function can be approximated by a fuzzy basis function expansion
[12].

Let us consider a class of nonlinear functions G

G = fg : C! g: (8)

Our goal is to find the exact upper bound g and the exact lower bound
g of the functions in the class G. The upper bound g satisfies the fol-
lowing two conditions for each z 2 C and arbitrary " > 0:

g(z) � max
g2G

g(z)

9g 2 G : g(z) < g(z) + " (9)

and the lower bound g satisfies

g(z) � max
g2G

g(z)

9g 2 G : g(z) > g(z) + ": (10)

It is impossible to obtain the bounds defined in (9) and (10) since
this would require infinite amount of data. In our case we deal with the
finite set of measured output values Y = fy1; . . . ; yNg and the finite
set of inputs Z = fz1; . . . ; zNg

yi=g(zi); g2G; zi2C � d
; yi2 ; i=1; . . . ; N: (11)

Note that the data are obtained by sampling different functions from G
with arbitrary values of z.

The idea of robust interval fuzzy modeling is to find a lower fuzzy
function f and an upper fuzzy function f that approximate g and g,
respectively. They have to satisfy the following condition:

f(zi) � yi � f(zi); 8zi 2 Z: (12)

The main request in defining the band is that it is as narrow as pos-
sible according to the proposed constraints. Our approach using the
fuzzy function approximation can be viewed as a generalization of the
piecewise linear approach [13] and gives a better approximation, or at
least a much narrower approximation band.

The upper and lower fuzzy functions, respectively, can be found by
solving the following optimization problems:

min
f

max
z 2Z

yi � f(zi) subject to yi � f(zi) � 0

min
f

max
z 2Z

yi � f(zi) subject to yi � f(zi) � 0: (13)

Fig. 1. Structure of the Wiener model.

The solutions to both problems can be found by linear programming,
because both problems can be viewed as linear programming problems
if fuzzy models (2) are used for f(zi) and f(zi)

f(zi) = ���
T (xpi)���xi f(zi) = ���

T (xpi)���xi: (14)

The min-max optimization problems in (13) can be solved as the
linear programming problems of minimizing �1 and �2, subject to the
inequalities

yi �

m

j=1

�j(xpi)���
T
j xi ��1; i = 1; . . . ; N

yi �

m

j=1

�j(xpi)���
T

j xi � 0; i = 1; . . . ; N; �1 � 0 (15)

and

�yi +

m

j=1

�j(xpi)���
T

j xi ��2; i = 1; . . . ; N

yi �

m

j=1

�j(xpi)���
T
j xi � 0; i = 1; . . . ; N; �2 � 0 (16)

on the parameters ���j , ���j , j = 1; . . . ;m, and �1 and �2 that stand for
the maximum approximation errors of both approximation functions.

Due to the numerical problems, the above-mentioned algorithm be-
comes a hard optimization problem that requires an enormous amount
of time, and so the solution ���j , ���j , j = 1; . . . ;m cannot be obtained in
a reasonable time. This problem occurs in the case of a larger number
of fuzzy parameters. To overcome this problem, the initial parameters
of the interval fuzzy model should be chosen to be close to the optimal
ones. The latter are obtained by using the ordinary fuzzy least squares
methods.

III. INTERVAL FUZZY MODEL USED IN THE WIENER MODEL

Fading memory systems, e.g., Wiener-like models, enable a simple
presentation of nonlinear systems. A Wiener model consists of a dy-
namic linear block with a normalized transfer function gain in cascade
with a static nonlinearity at the output as it is shown in Fig. 1 with v

as the intermediate variable at the output of the linear block with the
transfer function GL(q

�1), and f as the static nonlinearity.
Many descriptions of static nonlinearity are possible: piecewise

linear functions [13], an inverse polynomial, a polynomial spline, a
fuzzy static model, etc. All these methods enable the approximation
of different nonlinear static functions and the invertibility which is
necessary to identify the Wiener model.

Different approaches of Wiener-model identification are found in
the literature. The most frequently used is the nonlinear-linear (N-L)
approach, which is the most comprehensible and ensures an accurate
description of the static nonlinearity [14]. This approach requires
steady-state data. The main disadvantage of this method is that it
does not guarantee an unbiased estimation in an uncertain, noisy
environment.

Another approach to modeling of Wiener-type systems is proposed
in the present correspondence. The system under consideration has
the structure as depicted in Fig. 1, but is uncertain in the parameters.
Moreover, its output is corrupted with the limited measurement noise
or disturbance. The proposed INFUMO model is used to model
such systems, i.e., the upper and the lower bound of the system
response can be found for arbitrary excitation signal.
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Fig. 2. Identification data.

Fig. 3. Nonlinear static curve and membership functions.

A simulated experiment was conceived to illustrate the proposed
approach. The excitation signal had to be designed to obtain the
information about the steady-state behavior of the system. There is
the measurement noise of limited amplitude present at the output of
the system. The input and output signals are shown in Fig. 2. The
steady-state curve of the simulated system is shown in Fig. 3, where
the points correspond to the data pairs (usi; ysi) of the input variable
u and the corresponding output variable y during steady-state. The
dataset of steady-state points is a nonequidistant set of data, and
it is spread around the nominal static curve because of the noisy
output variable. This set of steady-state points is now modeled by
the interval fuzzy model to obtain the lower and upper bounds of
the whole set. When the set of steady-state points is rich enough,
in the sense that the whole operating region is sufficiently covered
by the data pairs (usi; ysi), then by using interval fuzzy modeling
we can assume that the nominal static curve is always between the
upper and lower bounds. These bounds are obtained by identifying
the following interval fuzzy model:

Rj : if us is Aj then ys = �j;1us + �j;0

Rj : if us is Aj then y
s
= �j;1us + �j;0; j = 1; . . . ; 4 (17)

with ys as the output variable in the steady-state and us the cor-
responding input variable. We chose four fuzzy domains to model
the system. The parameters of the interval fuzzy model are obtained
solving the linear programming problem stated in (15) and (16) where
the variables xp and x are substituted by us and [1; us]

T , respectively,
and m = 4. This problem was solved numerically using initial values
of parameters that are obtained by the least squares method. The
optimization produced the following results:

���
T

1 = [0:2240;0:0003] ���T
1
= [0:2024; 0:0089]

���
T

2 = [0:2276; 0:0550] ���T
2
= [0:2092; 0:0571]

���
T

3 = [0:2191;0:1226] ���T
3
= [0:1993; 0:1342]

���
T

4 = [0:1928;0:2251] ���T
4
= [0:1866; 0:2093]: (18)

The distributions of the membership functions are shown in Fig. 3,
which also depicts the upper and lower bounds. It should be noted
that the positioning of the membership functions is not treated in this
correspondence, although this is well known to be a very important
topic. Any existing method of positioning can be applied and combined
with our approach. In our case, the c-means clustering algorithm was
used [15], [16] to obtain the vertices of four membership functions Aj

(j = 1; . . . ; 4). These membership functions are shown in the bottom
part of Fig. 3. Thus, the static nonlinear mapping in Fig. 1 has been
identified.

The linear dynamic block GL(q
�1) still has to be identified. It has

the signal u at the input and v at the output (see Fig. 1). Since the model
(17) was obtained in the steady-state and the gain of GL(q

�1) is unity,
the static mapping from v to y (marked with f in Fig. 1) is equivalent
to the static mapping from us to ys that is described by the INFUMO
model (17). To calculate the intermediate variable v from y the inverse
static nonlinearity is required. In order to achieve this, the membership
functions Aj have to be transformed by the upper and the lower fuzzy
model to obtain membership functions Bj and Bj , respectively (see
Fig. 3). The membership functions �A (j = 1; . . . ; 4) are mapped to
the output domain across the fuzzy functions (14) to obtain the mem-
bership functions �

B
and �B , as shown in Fig. 3. The consequent

part of the rules of the static mapping y�v are obtained by solving the
linear programming problem stated in (15) and (16)

R
inv

j : if y(k) is Bj then v(k) = �
inv

j;1 y(k) + �
inv

j;0

R
inv
j : if y(k) is Bj then v(k) = �invj;1 y(k) + �invj;0

j = 1; . . . ; 4: (19)

The output variable y is mapped by the inverse static nonlinearity
defined in (19) to obtain the upper and lower intermediate variables v
and v, respectively. The average intermediate variable is then formed
as ~v = (v + v)=2. The transfer function GL(q

�1) formed as the re-
lation between the input variable u and the intermediate variable v is
estimated using the ARX identification method [17] on the data pairs
(u(k); ~v(k)). The following linear transfer function is obtained

GL(q
�1) =

0:3405q�1 + 0:2430q�2

1� 0:7853q�1 + 0:3674q�2
(20)

with the sampling time Ts = 1 s. Note that the gain of this transfer
function is not exactly 1, since all the parameters of the transfer func-
tion are identified independently. Nevertheless, the gain is very close
to 1.
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Fig. 4. Lower and upper bounds of the robust Wiener model.

The resulting robust Wiener model is now defined combining the
linear part [(20)] in the form of the difference equation and the static
nonlinearity in fuzzy form [(14)] as follows:

v(k) = 0:7853v(k� 1)� 0:3674v(k� 2)

+ 0:3405u(k � 1) + 0:2430u(k� 2) (21)

y(k) =���
T (v(k))���x(k) (22)

y(k) =���
T (v(k))���x(k) (23)

with

x(k) =
1

v(k)

��� =

���
T

1

���
T

2

���
T

3

���
T

4

��� =

���
T

1

���
T

2

���
T

3

���
T

4

: (24)

The details of the robust Wiener model output with the upper bound
y and the lower bound y is shown in Fig. 4, with the validation. It
is obvious that the measured output variable y is in the band defined
by robust Wiener model. This approach enables the modeling of non-
linear dynamical systems with uncertainties. It can also be easily used
to model the family of nonlinear time-invariant systems with uncertain
physical parameters. It is, therefore, useful in all applications where
those problems arise, especially in the case of fault detection or in the
case of robust control design.

IV. CONCLUSION

The problem of interval fuzzy model identification and its use in the
case of the robust Wiener model is addressed in this correspondence.
The proposed approach enables the modeling of nonlinear time-
invariant systems with uncertainties. The resulting model defines the
lower and upper model outputs that define the confidence interval of
the observed data. The interval fuzzy model is used to approximate
the static nonlinearity in the case of the robust Wiener model. This
approach to the modeling of nonlinear dynamical systems has the
potential for use in the areas of robust control and fault detection.
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